Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules.

نویسندگان

  • Jeffrey A Wesson
  • Richard J Johnson
  • Marrilda Mazzali
  • Anne M Beshensky
  • Susan Stietz
  • Ceci Giachelli
  • Lucy Liaw
  • Charles E Alpers
  • William G Couser
  • Jack G Kleinman
  • Jeremy Hughes
چکیده

Calcium nephrolithiasis is the most common form of renal stone disease, with calcium oxalate (CaOx) being the predominant constituent of renal stones. Current in vitro evidence implicates osteopontin (OPN) as one of several macromolecular inhibitors of urinary crystallization with potentially important actions at several stages of CaOx crystal formation and retention. To determine the importance of OPN in vivo, hyperoxaluria was induced in mice targeted for the deletion of the OPN gene together with wild-type control mice. Both groups were given 1% ethylene glycol, an oxalate precursor, in their drinking water for up to 4 wk. At 4 wk, OPN-deficient mice demonstrated significant intratubular deposits of CaOx crystals, whereas wild-type mice were completely unaffected. Retained crystals in tissue sections were positively identified as CaOx monohydrate by both polarized optical microscopy and x-ray powder diffraction analysis. Furthermore, hyperoxaluria in the OPN wild-type mice was associated with a significant 2- to 4-fold upregulation of renal OPN expression by immunocytochemistry, lending further support to a renoprotective role for OPN. These data indicate that OPN plays a critical renoprotective role in vivo as an inhibitor of CaOx crystal formation and retention in renal tubules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nephrolithiasis: Molecular Mechanism of Renal Stone Formation and the Critical Role Played by Modulators

Urinary stone disease is an ailment that has afflicted human kind for many centuries. Nephrolithiasis is a significant clinical problem in everyday practice with a subsequent burden for the health system. Nephrolithiasis remains a chronic disease and our fundamental understanding of the pathogenesis of stones as well as their prevention and cure still remains rudimentary. Regardless of the fact...

متن کامل

Adhesion at calcium oxalate crystal surfaces and the effect of urinary constituents.

Kidney stones, aggregates of microcrystals, most commonly contain calcium oxalate monohydrate (COM) as the primary constituent. The aggregation of COM microcrystals and their attachment to epithelial cells are thought to involve adhesion at COM crystal surfaces, mediated by anionic molecules or urinary macromolecules. Identification of the most important functional group-crystal face adhesive c...

متن کامل

Molecular modulation of calcium oxalate crystallization.

Calcium oxalate monohydrate (COM) is the primary constituent of the majority of renal stones. Osteopontin (OPN), an aspartic acid-rich urinary protein, and citrate, a much smaller molecule, are potent inhibitors of COM crystallization at levels present in normal urine. Current concepts of the role of site-specific interactions in crystallization derived from studies of biomineralization are rev...

متن کامل

Immunohistochemical localization and mRNA quantification of osteopontin and Tamm-Horsfall protein in canine renal tissue after potassium oxalate injection

BACKGROUND Urinary macromolecules contribute to promoting or inhibiting crystal retention in renal tissue and stone formation. Osteopontin (OPN) and Tamm-Horsfall protein (THP) are the most important proteins involved in this process. Although these two proteins were discovered a long time ago, their role in setting kidney stone formation has not yet been fully investigated. We conducted a stud...

متن کامل

Calcium oxalate crystal adherence to hyaluronan-, osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys.

Retention of crystals in the kidney is an essential early step in renal stone formation. Studies with renal tubular cells in culture indicate that hyaluronan (HA) and osteopontin (OPN) and their mutual cell surface receptor CD44 play an important role in calcium oxalate (CaOx) crystal binding during wound healing. This concept was investigated in vivo by treating rats for 1, 4, and 8 d with eth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 14 1  شماره 

صفحات  -

تاریخ انتشار 2003